Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(2): 36, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291310

RESUMO

KEY MESSAGE: A total of 90,000 capture probes derived from wheat and Thinopyrum elongatum were integrated into one chip, which served as an economical genotype for explorating Thinopyrumspecies and their derivatives. Thinopyrum species play a crucial role as a source of new genetic variations for enhancing wheat traits, including resistance to both abiotic and biotic factors. Accurate identification of exogenous chromosome(s) or chromosome segments or genes is essential following the introduction of alien genetic material into wheat, but this task remains challenging. This study aimed to develop a high-resolution wheat-Thinopyrum elongatum array, named GenoBaits®WheatplusEE, to trace alien genetic information by genotyping using a target sequencing system. This GenoBaits®WheatplusEE array included 90,000 capture probes derived from two species and integrated into one chip, with 10,000 and 80,000 originating from wheat and Th. elongatum, respectively. The capture probes were strategically positioned in genes and evenly distributed across the genome, facilitating the development of a roadmap for identifying each alien gene. The array was applied to the high-throughput identification of the alien chromosomes or segments in Thinopyrum and distantly related species and their derivatives. Our results demonstrated that the GenoBaits®WheatplusEE array could be used for direct identification of the breakpoint of alien segments, determine copy number of alien chromosomes, and reveal variations in wheat chromosomes by a single round of target sequencing of the sample. Additionally, we could efficiently and cost-effectively genotype, supporting the exploration of subgenome composition, phylogenetic relationships, and polymorphisms in essential genes (e.g., Fhb7 gene) among Thinopyrum species and their derivatives. We hope that GenoBaits®WheatplusEE will become a widely adopted tool for exporting wild germplasm for wheat improvement in the future.


Assuntos
Poaceae , Triticum , Triticum/genética , Filogenia , Poaceae/genética , Fenótipo , Polimorfismo Genético
2.
Theor Appl Genet ; 136(9): 193, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606787

RESUMO

KEY MESSAGE: Thirty-three stable QTL for 13 yield-related traits across ten environments were identified in the PD34/MY47 RIL population, and a candidate gene TaGS5-3D in Qmt.nwafu.3D was preliminarily identified to affect grain-related traits through accumulation of specific transcripts. Dissecting the genetic basis of yield-related traits is pivotal for improvement of wheat yield potential. In this study, a recombinant inbred line (RIL) population genotyped by SNP markers was used to detect quantitative trait loci (QTL) related to yield-related traits in ten environments. A total of 102 QTL were detected, including 33 environmentally stable QTL and 69 putative QTL. Among them, Qmt.nwafu.3D was identified as a pleiotropic QTL in the physical interval of 149.77-154.11 Mb containing a potential candidate gene TaGS5-3D. An SNP (T > C) was detected in its ninth intron, and TaGS5-3D-C was validated as a superior allele associated with larger grains using a CAPS marker. Interestingly, we found that TaGS5-3D-C was closely related to significantly up-regulated expression of intron-retained transcript (TaGS5-3D-PD34.1), while TaGS5-3D-T was related to dominant expression of normal splicing transcript (TaGS5-3D-MY47.1). Our results indicated that alternative splicing associated with the SNP T/C could be involved in the regulation of grain-related traits, laying a foundation for the functional analysis of TaGS5-3D and its greater potential application in high-yield wheat breeding.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Íntrons , Alelos , Grão Comestível/genética , Nucleotídeos
3.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047699

RESUMO

Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) is an excellent gene resource for wheat breeding, which is characterized by early maturity, low plant height, and disease resistance. The wheat-P. huashanica derivatives were created by the elite genes of P. huashanica and permeate into common wheat through hybridization. Among them, a long-glume material 20JH1155 was identified, with larger grains and longer spike than its parents. In the present study, the methods of cytological observation, GISH, and sequential FISH analysis showed that 20JH1155 contained 21 pairs of wheat chromosomes and a pair of P. huashanica. There were some differences in 5A and 7B chromosomes between 20JH1155 and parental wheat 7182. Molecular marker, FISH, and sequence cloning indicated 20JH1155 alien chromosomes were 3Ns of P. huashanica. In addition, differentially expressed genes during immature spikelet development of 20JH1155 and 7182 and predicted transcription factors were obtained by transcriptome sequencing. Moreover, a total of 7 makers derived from Ph#3Ns were developed from transcriptome data. Taken together, the wheat-P. huashanica derived line 20JH1155 provides a new horizon on distant hybridization of wheat and accelerates the utilization of genes of P. huashanica.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Poaceae/genética , Resistência à Doença/genética , Hibridização Genética , Doenças das Plantas/genética
4.
Planta ; 257(5): 84, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943494

RESUMO

MAIN CONCLUSION: 44 wheat LOX genes were identified by silico genome-wide search method. TaLOX5, 7, 10, 24, 29, 33 were specifically expressed post aphid infestation, indicating their participation in wheat-aphid interaction. In plants, LOX genes play important roles in various biological progresses including seed germination, tuber development, plant vegetative growth and most crucially in plant signal transduction, stress response and plant defense against plant diseases and insects. Although LOX genes have been characterized in many species, the importance of the LOX family in wheat has still not been well understood, hampering further improvement of wheat under stress conditions. Here, we identified 44 LOX genes (TaLOXs) in the whole wheat genome and classified into three subfamilies (9-LOXs, Type I 13-LOXs and Type II 13-LOXs) according to phylogenetic relationships. The TaLOXs belonging to the same subgroup shared similar gene structures and motif organizations. Synteny analysis demonstrated that segmental duplication events mainly contributed to the expansion of the LOX gene family in wheat. The results of protein-protein interaction network (PPI) and miRNA-TaLOXs predictions revealed that three TaLOXs (TaLOX20, 22 and 37) interacted mostly with proteins related to methyl jasmonate (MeJA) signaling pathway. The expression patterns of TaLOXs in different tissues (root, stem, leaf, spike and grain) under diverse abiotic stresses (heat, cold, drought, drought and heat combined treatment, and salt) as well as under diverse biotic stresses (powdery mildew pathogen, Fusarium graminearum and stripe rust pathogen) were systematically analyzed using RNA-seq data. We obtained aphid-responsive candidate genes by RNA-seq data of wheat after the English grain aphid infestation. Aphid-responsive candidate genes, including TaLOX5, 7, 10, 24, 29 and 33, were up-regulated in the wheat aphid-resistant genotype (Lunxuan144), while they were little expressed in the susceptible genotype (Jimai22) during late response (48 h and 72 h) to the English grain aphid infestation. Meanwhile, qRT-PCR analysis was used to validate these aphid-responsive candidate genes. The genetic divergence and diversity of all the TaLOXs in bread wheat and its relative species were investigated by available resequencing data. Finally, the 3D structure of the TaLOX proteins was predicted based on the homology modeling method. This study not only systematically investigated the characteristics and evolutionary relationships of TaLOXs, but also provided potential candidate genes in response to the English grain aphid infestation and laid the foundation to further study the regulatory roles in the English grain aphid infestation of LOX family in wheat and beyond.


Assuntos
Afídeos , Animais , Afídeos/genética , Lipoxigenase/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
5.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902258

RESUMO

SNARE protein is an essential factor driving vesicle fusion in eukaryotes. Several SNAREs have been shown to play a crucial role in protecting against powdery mildew and other pathogens. In our previous study, we identified SNARE family members and analyzed their expression pattern in response to powdery mildew infection. Based on quantitative expression and RNA-seq results, we focused on TaSYP137/TaVAMP723 and hypothesized that they play an important role in the interaction between wheat and Blumeria graminis f. sp. Tritici (Bgt). In this study, we measured the expression patterns of TaSYP132/TaVAMP723 genes in wheat post-infection with Bgt and found that the expression pattern of TaSYP137/TaVAMP723 was opposite in resistant and susceptible wheat samples infected by Bgt. The overexpression of TaSYP137/TaVAMP723 disrupted wheat's defense against Bgt infection, while silencing these genes enhanced its resistance to Bgt. Subcellular localization studies revealed that TaSYP137/TaVAMP723 are present in both the plasma membrane and nucleus. The interaction between TaSYP137 and TaVAMP723 was confirmed using the yeast two-hybrid (Y2H) system. This study offers novel insights into the involvement of SNARE proteins in the resistance of wheat against Bgt, thereby enhancing our comprehension of the role of the SNARE family in the pathways related to plant disease resistance.


Assuntos
Ascomicetos , Proteínas de Plantas , Proteínas de Plantas/genética , Triticum/genética , Ascomicetos/fisiologia , Resistência à Doença/genética , Doenças das Plantas/genética
6.
BMC Plant Biol ; 22(1): 564, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463134

RESUMO

BACKGROUND: Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is prevalent in the main wheat-producing regions of China, resulting in severe yield losses in recent years. Mining and utilization of resistant genes from wild relatives of wheat is the most environmentally sound measure to control disease. Aegilops geniculata Roth (2n = 2x = 28, UgUgMgMg) is an essential and valuable disease-resistance gene donor for wheat improvement as a close relative species. RESULTS: In this study, to validate powdery mildew resistance locus on chromosome 7Mg, two genetic populations were constructed and through crossing wheat - Ae. geniculata 7Mg disomic addition line NA0973-5-4-1-2-9-1 and 7Mg (7 A) alien disomic substitution line W16998 with susceptible Yuanfeng175 (YF175, authorized varieties from Shaanxi province in 2005), respectively. Cytological examination, in situ hybridization (ISH), and functional molecular markers analysis revealed that the plants carrying chromosome 7Mg showed high resistance to powdery mildew in both F1 and F2 generation at the seedling stage. Besides, 84 specific markers were developed to identify the plants carrying chromosome 7Mg resistance based on the specific-locus amplified fragment sequencing (SLAF-seq) technique. Among them, four markers were selected randomly to check the reliability in F2 segregating populations derived from YF175/NA0973-5-4-1-2-9-1 and YF175/W16998. In summary, the above analysis confirmed that a dominant high powdery mildew resistance gene was located on chromosome 7Mg of Ae. geniculata. CONCLUSION: The results provide a basis for mapping the powdery mildew resistance gene mapping on chromosome 7Mg and specific markers for their utilization in the future.


Assuntos
Aegilops , Triticum/genética , Reprodutibilidade dos Testes , Erysiphe , Biomarcadores , Cromossomos
7.
Front Plant Sci ; 13: 1012939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407596

RESUMO

Leymus mollis (Trin.) Pilg. (2n = 4x = 28, NsNsXmXm) potentially harbours useful genes that might contribute to the improvement of wheat. We describe M862 as a novel wheat-L. mollis alien disomic substitution line from a cross between wheat cv. 7182 and octoploid Tritileymus M47. Cytological observations indicate that M862 has a chromosome constitution of 2n = 42 = 21II. Two 4D chromosomes of wheat substituted by two L. mollis Ns chromosomes were observed, using the GISH and ND-FISH analyses. Molecular marker, 55K SNP array and wheat-P. huashanica liquid array (GenoBaits®WheatplusPh) analyses further indicate that the alien chromosomes are L. mollis 4Ns. Therefore, it was deduced that M862 was a wheat-L. mollis 4Ns(4D) alien disomic substitution line. There were also changes in chromosomes 1A, 1D, 2B and 5A detected by ND-FISH analysis. Transcriptome sequencing showed that the structural variation of 1D, 1A and 5A may have smaller impact on gene expression than that for 2B. In addition, a total of 16 markers derived from Lm#4Ns were developed from transcriptome sequences, and these proved to be highly effective for tracking the introduced chromosome. M862 showed reduced height, larger grains (weight and width), and was highly resistance to CYR32 and CYR34 stripe rust races at the seedling stage and mixed stripe rust races (CYR32, CYR33 and CYR34) at the adult stage. It was also resistance to Fusarium head blight (FHB). This alien disomic substitution line M862 may be exploited as an important genetic material in the domestication of stipe rust and FHB resistance wheat varieties.

8.
Insects ; 13(9)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36135478

RESUMO

Clip cages are commonly used to confine aphids or other small insects to a single leaf when conducting plant-small insect interaction studies; however, clip cages are usually heavy or do not efficiently transmit light, which has an impact on leaf physiology, limiting their application. Here, simple, lightweight, and transparent modified clip cages were constructed using punched clear plastic cups, cut transparent polyvinyl chloride sheets, nylon organdy mesh, and bent duck-bill clips. These cages can be clipped directly onto dicot leaves or attached to monocot leaves with bamboo skewers and elastic bands. The weight, production time, and aphid escape rates of the modified clip cages were 3.895 ± 0.004 g, less than 3 min, and 2.154 ± 0.323%, respectively. The effects of the modified clip cage on the growth, development, and reproduction of the English grain aphid (Sitobion avenae Fabricius) in comparison with the whole cage were studied. The biochemical responses of wheat (Triticum aestivum) to the cages were also investigated. No significant differences were observed in the life table parameters, nymph mortality, and adult fecundity in S. avenae confined to clip cages and whole cages, but the clip cages were more time efficient than whole cages when conducting life table studies. Moreover, the hydrogen peroxide accumulation, callose deposition, and cell necrosis in wheat leaves covered by empty clip cages and empty whole cages were similar, and significantly lower than treatments where the aphids were inside the clip cage. The results demonstrate that the modified clip cages had negligible effects on the plant and aphid physiology, suggesting that they are effective for studying plant-small insect interactions.

9.
Plant Sci ; 323: 111392, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35868348

RESUMO

Improving yield potential is a major goal of wheat breeding that depends on identifying key genetic loci. In this study, two residual heterozygous line RHL351- and RHL78-derived populations were employed for genetic linkage map construction and QTL detection. Two genetic populations indicated a robust grain-size QTL between Marker6 and Marker10. It covered a 95.54-99.38 Mb physical interval and was named Qpleio.nwafu.3D, containing the candidate gene Tasg (TraesCS3D02G137200). Intriguingly, RNA-seq analysis and sequencing revealed two different allelic variants in Tasg, named Tasg-D1 (G>A) and Tasg-D2 (C>G), respectively. Although the relationship between Tasg-D1 and grain size had been demonstrated previously, here we provided the first genetic evidence that C/G allelic variation in Tasg-D2 was associated with grain shape and size through a newly developed dCAPS marker. In addition, transcriptome comparison indicated that Tasg-D1/2 might primarily contribute to significant expression differences in brassinolide (BR) metabolism-related genes rather than those related to BR responses in developing grains and spikes. Our study provided new evidence and a breeder-friendly dCAPS marker for improving grain size through the selection of Tasg, as well as a basis to understand Tasg function in the future.


Assuntos
Locos de Características Quantitativas , Triticum , Brassinosteroides , Mapeamento Cromossômico , Grão Comestível/genética , Ligação Genética , Pleiotropia Genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Esteroides Heterocíclicos , Triticum/genética
10.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806057

RESUMO

Fusarium head blight (Fhb), powdery mildew, and stripe rust are major wheat diseases globally. Aegilops geniculata Roth (UgUgMgMg, 2n = 4x = 28), a wild relative of common wheat, is valuable germplasm of disease resistance for wheat improvement and breeding. Here, we report the development and characterization of two substitution accessions with high resistance to powdery mildew, stripe rust and Fhb (W623 and W637) derived from hybrid progenies between Ae. geniculata and hexaploid wheat Chinese Spring (CS). Fluorescence in situ hybridization (FISH), Genomic in situ hybridizations (GISH), and sequential FISH-GISH studies indicated that the two substitution lines possess 40 wheat chromosomes and 2 Ae. geniculata chromosomes. Furthermore, compared that the wheat addition line parent W166, the 2 alien chromosomes from W623 and W637 belong to the 7Mg chromosomes of Ae. geniculata via sequential FISH-GISH and molecular marker analysis. Nullisomic-tetrasomic analysis for homoeologous group-7 of wheat and FISH revealed that the common wheat chromosomes 7A and 7B were replaced in W623 and W637, respectively. Consequently, lines W623, in which wheat chromosomes 7A were replaced by a pair of Ae. geniculata 7Mg chromosomes, and W637, which chromosomes 7B were substituted by chromosomes 7Mg, with resistance to Fhb, powdery mildew, and stripe rust. This study has determined that the chromosome 7Mg from Ae. geniculata exists genes resistant to Fhb and powdery mildew.


Assuntos
Aegilops , Basidiomycota , Fusarium , Aegilops/genética , Basidiomycota/genética , Cromossomos de Plantas/genética , Resistência à Doença/genética , Erysiphe , Fusarium/genética , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
11.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269816

RESUMO

Leymus mollis (2n = 4x = 28, NsNsXmXm), a wild relative of common wheat (Triticum aestivum L.), carries numerous loci which could potentially be used in wheat improvement. In this study, line 17DM48 was isolated from the progeny of a wheat and L. mollis hybrid. This line has 42 chromosomes forming 21 bivalents at meiotic metaphase I. Genomic in situ hybridization (GISH) demonstrated the presence of a pair chromosomes from the Ns genome of L. mollis. This pair substituted for wheat chromosome 2D, as shown by fluorescence in situ hybridization (FISH), DNA marker analysis, and hybridization to wheat 55K SNP array. Therefore, 17DM48 is a wheat-L. mollis 2Ns (2D) disomic substitution line. It shows longer spike and a high level of stripe rust resistance. Using specific-locus amplified fragment sequencing (SLAF-seq), 13 DNA markers were developed to identify and trace chromosome 2Ns of L. mollis in wheat background. This line provides a potential bridge germplasm for genetic improvement of wheat stripe rust resistance.


Assuntos
Basidiomycota , Triticum , Basidiomycota/genética , Cromossomos de Plantas/genética , Resistência à Doença/genética , Marcadores Genéticos , Hibridização in Situ Fluorescente , Doenças das Plantas/genética , Poaceae/genética , Triticum/genética
12.
BMC Plant Biol ; 22(1): 111, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279089

RESUMO

BACKGROUND: Owing to their excellent resistance to abiotic and biotic stress, Thinopyrum intermedium (2n = 6x = 42, JJJsJsStSt) and Th. ponticum (2n = 10x = 70) are both widely utilized in wheat germplasm innovation programs. Disomic substitution lines (DSLs) carrying one pair of alien chromosomes are valuable bridge materials for transmission of novel genes, fluorescence in situ hybridization (FISH) karyotype construction and specific molecular marker development. RESULTS: Six wheat-Thinopyrum DSLs derived from crosses between Abbondanza nullisomic lines (2n = 40) and two octoploid Trititrigia lines (2n = 8x = 56), were characterized by sequential FISH-genome in situ hybridization (GISH), multicolor GISH (mc-GISH), and an analysis of the wheat 15 K SNP array combined with molecular marker selection. ES-9 (DS2St (2A)) and ES-10 (DS3St (3D)) are wheat-Th. ponticum DSLs, while ES-23 (DS2St (2A)), ES-24 (DS3St (3D)), ES-25(DS2St (2B)), and ES-26 (DS2St (2D)) are wheat-Th. intermedium DSLs. ES-9, ES-23, ES-25 and ES-26 conferred high thousand-kernel weight and stripe rust resistance at adult stages, while ES-10 and ES-24 were highly resistant to stripe rust at all stages. Furthermore, cytological analysis showed that the alien chromosomes belonging to the same homoeologous group (2 or 3) derived from different donors carried the same FISH karyotype and could form a bivalent. Based on specific-locus amplified fragment sequencing (SLAF-seq), two 2St-chromosome-specific markers (PTH-005 and PTH-013) and two 3St-chromosome-specific markers (PTH-113 and PTH-135) were developed. CONCLUSIONS: The six wheat-Thinopyrum DSLs conferring stripe rust resistance can be used as bridging parents for transmission of valuable resistance genes. The utility of PTH-113 and PTH-135 in a BC1F2 population showed that the newly developed markers could be useful tools for efficient identification of St chromosomes in a common wheat background.


Assuntos
Cromossomos de Plantas , Resistência à Doença/genética , Marcadores Genéticos , Poaceae/genética , Poaceae/microbiologia , Puccinia/patogenicidade , Triticum/genética , Triticum/microbiologia , Análise Citogenética , Variação Genética , Genótipo
13.
Theor Appl Genet ; 135(4): 1177-1189, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088104

RESUMO

KEY MESSAGE: Flanking markers useful for identifying hybrid necrosis alleles were identified by fine mapping Ne1 and Ne2 and the distribution of the two necrosis genes was investigated in Chinese elite wheat varieties. Hybrid necrosis of wheat is caused by the interaction of two dominant complementary genes Ne1 and Ne2 present separately in normal parents and is regarded as a barrier to gene transfer in wheat breeding. However, the necrosis alleles still occur at a high frequency in modern wheat varieties. In this study, we constructed two high-density genetic maps of Ne1 and Ne2 in winter wheat. In these cultivars, Ne1 was found to be located in a span interval of 0.50 centimorgan (cM) on chromosome 5BL delimited by markers Nwu_5B_4137 and Nwu_5B_5114, while Ne2 co-segregated with markers Lseq102 and TC67744 on 2BS. Statistical analysis confirmed that the dosage effect of Ne1 and Ne2 also existed in moderate and severe hybrid necrosis systems, and the symptoms of necrosis can also be affected by the genetic background. Furthermore, we clarified the discrete distribution and proportion of the Ne1 and Ne2 in the 10 China's agro-ecological production zones. We concluded that 26.2% and 33.2% of the 1364 cultivars (lines) were genotyped with Ne1Ne1ne2ne2 and ne1ne1Ne2Ne2, respectively and introduced modern cultivars should directly affect the frequencies of necrosis genes in modern Chinese cultivars (lines), especially that of Ne2. Taking investigations in spring wheat together, we proposed that hybrid necrosis alleles could positively affect breeding owing to their linked excellent genes such as Lr13. Additionally, based on the pedigrees and hybridization tests, we speculated that the Ne1 and Ne2 in winter wheat may directly originate from wild emmer and introduced cultivars or hexaploid triticale, respectively.


Assuntos
Melhoramento Vegetal , Triticum , Genótipo , Hibridização Genética , Necrose , Triticum/genética
14.
Genes (Basel) ; 14(1)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36672783

RESUMO

Invertase (INV) irreversibly catalyzes the conversion of sucrose into glucose and fructose, playing important role in plant development and stress tolerance. However, the functions of INV genes in wheat have been less studied. In this study, a total of 126 TaINV genes were identified using a genome-wide search method, which could be classified into five classes (TaCWI-α, TaCWI-ß, TaCI-α, TaCI-ß, and TaVI) based on phylogenetic relationship. A total of 101 TaINVs were collinear with their ancestors in the synteny analysis, and we speculated that polyploidy events were the main force in the expansion of the TaINV gene family. Compared with TaCI, TaCWI and TaVI are more similar in gene structure and protein properties. Transcriptome sequencing analysis showed that TaINVs expressed in multiple tissues with different expression levels. Among 19 tissue-specific expressed TaINVs, 12 TaINVs showed grain-specific expression pattern and might play an important role in wheat grain development. In addition, qRT-PCR results further confirmed that TaCWI50 and TaVI27 show different expression in grain weight NILs. Our results demonstrated that the high expression of TaCWI50 and TaVI27 may be associated with a larger TGW phenotype. This work provides the foundations for understanding the grain development mechanism.


Assuntos
Triticum , beta-Frutofuranosidase , beta-Frutofuranosidase/genética , Filogenia , Perfilação da Expressão Gênica , Sintenia , Grão Comestível/genética
15.
Brain Behav ; 12(1): e2454, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894416

RESUMO

INTRODUCTION: The role of serum cholesterol in the pathogenesis of Parkinson's disease (PD) remains unclear. The objective of this study was to assess the association between serum cholesterol and PD in a cohort of statin-free newly diagnosed PD patients. METHODS: This retrospective study used fasting lipid profiles obtained from 672 consecutive statin-free newly diagnosed PD individuals and 540 controls. These PD individuals were identified from three medical institutions during 2017-2021, and the controls were identified from three physical examination centers during the same time period. Logistic regressions were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs), with adjustment of age, sex, and tobacco use history. RESULTS: Among 672 PD individuals, 112 were excluded in accordance with the current criteria, leaving 560 PD patients. The multivariate binary logistic regression analysis showed that LDL-C was the only variable contributing to the occurrence of PD (OR 1.39, 95% CI: 1.07-2.31, p < .001) after adjusting for age, sex, and tobacco use history; this association persisted following further adjustment for TC and HDL-C. In the subgroup analysis of the adjusted results of LDL-C after correcting for TC and HDL-C, lower LDL-C was associated with a higher risk of PD. CONCLUSION: Among selected populations of statin-free newly diagnosed PD individuals, low LDL-C might be associated with the occurrence of PD.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doença de Parkinson , LDL-Colesterol , Estudos de Coortes , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Doença de Parkinson/diagnóstico , Estudos Retrospectivos , Fatores de Risco
16.
BMC Plant Biol ; 21(1): 575, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872505

RESUMO

BACKGROUND: Aegilops geniculata Roth is closely related to common wheat (Triticum aestivum L.) and is a valuable genetic resource for improvement of wheat. RESULTS: In this study, the W19513 line was derived from the BC1F10 progeny of a cross between wheat 'Chinese Spring' and Ae. geniculata SY159. Cytological examination showed that W19513 contained 44 chromosomes. Twenty-two bivalents were formed at the first meiotic metaphase I in the pollen mother cellsand the chromosomes were evenly distributed to opposite poles at meiotic anaphase I. Genomic in situ hybridization demonstrated that W19513 carried a pair of alien chromosomes from the M genome. Fluorescence in situ hybridization confirmed detection of variation in chromosomes 4A and 6B. Functional molecular marker analysis using expressed sequence tag-sequence-tagged site and PCR-based landmark unique gene primers revealed that the alien gene belonged to the third homologous group. The marker analysis confirmed that the alien chromosome pair was 3Mg. In addition, to further explore the molecular marker specificity of chromosome 3Mg, based on the specific locus amplified fragment sequencing technique, molecular markers specific for W19513 were developed with efficiencies of up to 47.66%. The W19513 line was inoculated with the physiological race E09 of powdery mildew (Blumeria graminis f. sp. tritici) at the seedling stage and showed moderate resistance. Field inoculation with a mixture of the races CYR31, CYR32, CYR33, and CYR34 of the stripe rust fungus (Puccinia striiformis f. sp. triticii) revealed that the line W19513 showed strong resistance. CONCLUSIONS: This study provides a foundation for use of the line W19513 in future genetic research and wheat improvement.


Assuntos
Aegilops/genética , Doenças das Plantas/genética , Triticum/genética , Aegilops/microbiologia , Ascomicetos/fisiologia , Basidiomycota/fisiologia , Cromossomos de Plantas , Análise Citogenética , Resistência à Doença/genética , Marcadores Genéticos , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Triticum/microbiologia
17.
Nanomaterials (Basel) ; 11(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34361156

RESUMO

Gradient nanostructure (GNS) has drawn great attention, owing to the unique deformation and properties that are superior to nanostructure with uniform scale. GNS is commonly fabricated via surface plastic deformation with small tips (of balls or shots) so as to produce high deformation to refine the coarse grains, but unfortunately it suffers from the deterioration of surface quality which is hard to guarantee the reliable service. Although there are mirror-finishing techniques that can greatly enhance the surface quality, the induced slight deformation is commonly unable to produce GNS of reasonable thickness. Here, we propose a method to fabricate a GNS surface layer with a substantially enhanced surface quality via ultra-sonic rolling treatment (USRT), namely, surface rolling with a roller vibrated at a frequency of 20,000 Hz. It is found that 4-pass USRT is able to produce 20-30 µm thick GNS on AISI 304 stainless steel pipe inner surface, wherein the surface quality is enhanced by one order of magnitude from the starting Ra = 3.92 µm to 0.19 µm. Processing by a roller with a high-frequency vibration is necessary for both good surface quality and the effective accumulation of heavy deformation on the surface. The flattening mechanism as well as the microstructural evolution from millimeter- to nanometer-scale for AISI 304 stainless steel is discussed.

18.
J Int Med Res ; 49(5): 3000605211016689, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34024169

RESUMO

OBJECTIVE: To collect computed tomography data of the laryngeal anatomy of Chinese men and to determine the feasibility of using the size 4 Ambu AuraOnce laryngeal mask (Ambu A/S, Copenhagen, Denmark) in Chinese men weighing >70 kg. METHODS: This prospective study involved men who underwent surgery from May 2018 to January 2019 at Jinshan Hospital. Pharyngeal and laryngeal parameters were measured by computed tomography. The laryngeal mask insertion success rate, requirement for tracheal tube insertion, laryngeal mask insertion time, fiberoptic bronchoscopy grading, air leakage pressure, and pharyngeal complications were analyzed. RESULTS: In a comparison of the size 4 and 5 Ambu AuraOnce devices, the first insertion success rate was 100% and 87% and the three-times insertion success rate was 100% and 93%, respectively, with no significant differences. However, the insertion time was significantly different at 19.6 ± 5.9 versus 31.1 ± 11.2 s, respectively, and the proportions of fiberoptic grading levels were also significantly different. There were no significant differences in the air leakage pressure or pharyngeal complications. CONCLUSION: The size 4 Ambu AuraOnce is more adequate than the size 5 for Chinese men weighing >70 kg, with a shorter insertion time and higher fiberoptic bronchoscopic grading.


Assuntos
Máscaras Laríngeas , Anestesia Geral , China , Humanos , Masculino , Projetos Piloto , Estudos Prospectivos
19.
Cytotherapy ; 23(8): 715-723, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33863641

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy is a promising therapeutic strategy against lymphoma. However, post-treatment relapses due to antigen loss remain a challenge. Here the authors designed a novel bicistronic CAR construct and tested its functions in vitro and in vivo. The CAR construct consisted of individual anti-CD19 and anti-CD20 single-chain fragment variables equipped with ICOS-CD3ζ and 4-1BB-CD3ζ intracellular domains, respectively. The CD19 and CD20 bicistronic CAR T cells exhibited tumor lytic capacities equivalent to corresponding monospecific CAR T cells. Moreover, when stimulated with CD19 and CD20 simultaneously, the bicistronic CAR T cells showed prolonged persistence and enhanced cytokine generation compared with single stimulations. Interestingly, the authors found that the 4-1BB signal was predominant in the signaling profiles of ICOS and 4-1BB doubly activated CAR T cells. In vivo study using a CD19/CD20 double-positive tumor model revealed that the bicistronic CAR T cells were more efficient than monospecific CD19 CAR T cells in eradicating tumors and prolonging mouse survival. The authors' novel bicistronic CD19/CD20 CAR T cells demonstrate improved anti-tumor efficacy in response to dual antigen stimulations. These data provide optimism that this novel bicistronic CAR construct can improve treatment outcomes in patients with relapsed/refractory B cell malignancy.


Assuntos
Receptores de Antígenos Quiméricos , Animais , Antígenos CD19/genética , Humanos , Imunoterapia Adotiva , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Camundongos , Recidiva Local de Neoplasia , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos/genética , Linfócitos T
20.
PeerJ ; 9: e10788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552743

RESUMO

SNARE proteins mediate eukaryotic cell membrane/transport vesicle fusion and act in plant resistance to fungi. Herein, 173 SNARE proteins were identified in wheat and divided into 5 subfamilies and 21 classes. The number of the SYP1 class type was largest in TaSNAREs. Phylogenetic tree analysis revealed that most of the SNAREs were distributed in 21 classes. Analysis of the genetic structure revealed large differences among the 21 classes, and the structures in the same group were similar, except across individual genes. Excluding the first homoeologous group, the number in the other homoeologous groups was similar. The 2,000 bp promoter region of the TaSNARE genes were analyzed, and many W-box, MYB and disease-related cis-acting elements were identified. The qRT-PCR-based analysis of the SNARE genes revealed similar expression patterns of the same subfamily in one wheat variety. The expression patterns of the same gene in resistant/sensitive varieties largely differed at 6 h after infection, suggesting that SNARE proteins play an important role in early pathogen infection. Here, the identification and expression analysis of SNARE proteins provide a theoretical basis for studies of SNARE protein function and wheat resistance to powdery mildew.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...